

Modulhandbuch

für den Studiengang

Master of Science
Wirtschaftsmathematik

(Prüfungsordnungsversion: 20192)

für das Wintersemester 2024/25

Inhaltsverzeichnis

VI	asterarbeit (M.Sc. Wirtschaftsmathematik 20192) (1998)	3
	asterseminar (65955)	4
St	udienrichtung Stochastik und Risikomanagement	
	Lektüre von Arbeiten zur Risikoanalyse (LektRA) (65702)	
	Hauptseminar Quantitatives Risikomanagement (65861)	8
	Robust optimization II (65918)	9
	Seminar (65950)	
	Fortgeschrittene Risikoanalyse 2 (65951)	
	Fortgeschrittene Risikoanalyse 1 (65963)	
	Mathematische Statistik (65969)	
	Stochastische Analysis (65970)	
	Lektüre von Arbeiten zur Stochastik (924407)	
	Fortgeschrittene Themen der Stochastik (65065)	17
St	udienrichtung Optimierung und Prozessmanagement	
	Convex Geometry and Applications (65086)	20
	Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data	
	Analytics II (65723)	
	Conic Optimization and Applications (65862)	
	Introduction to material- and shape optimization (65915)	
	Discrete optimization I (65917)	
	Robust optimization II (65918)	
	Dualität und Optimierung (65926)	
	Discrete optimization II (65933)	
	Seminar (65950)	
	Nichtglatte Optimierung (nicht vertieft) (65952)	
	Numerik der Optimalen Steuerungen (65954)	
	Shape Optimization (65958)	
	Theorie der Optimalsteuerungen (65959)	
	Vertiefte Nichtlineare Optimierung (65960)	
	Advanced Algorithms for Nonlinear Optimization (AlgNOpt) (65984)	
	Advanced Nonlinear Optimization (AdvNLOpt) (65986)	
	Optimization in industry and economy (65923)	
	Algorithmic Game Theory (65082)	
	Discrete optimization III (65910)	51
	Selected Topics in Mathematics of Learning (65789)	
	Mathematics of Learning (65785)	
	Ausgewählte Kapitel der Nichtlinearen Optimierung (294239)	
	Numerical Aspects of Linear and Integer Programming (407487)	
	Projektseminar Optimierung (Master) (562819)	
	Nichtglatte Optimierung (vertieft) (65883)	59
	Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data	6.1
	Analytics I (65133)	61

1	Modulbezeichnung 1998	Masterarbeit (M.Sc. Wirtschaftsmathematik 20192) Master's thesis	30 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Friedrich Knop
5	Inhalt	Eigenständige Lösung einer wissenschaftlichen Aufgabe im Bereich der Wirtschaftsmathematik unter Anleitung und schriftliche Ausarbeitung Betreuung durch Hochschullehrer/ in der Mathematik
6	Lernziele und Kompetenzen	Die Studierenden - bearbeiten eine Problemstellung aus dem Bereich der Wirtschaftsmathematik mit wissenschaftlichen Methoden selbständig und stellen diese strukturiert in schriftlicher Form dar; - wirken bei der Bearbeitung aktueller Forschungsthemen problemorientiert mit und definieren anhand dieses Wissens neue Forschungsziele.
7	Voraussetzungen für die Teilnahme	Es wird empfohlen alle Module des Masterstudiengangs vor Beginn der Masterarbeit abgeschlossen zu haben.
8	Einpassung in Studienverlaufsplan	Semester: 3
9	Verwendbarkeit des Moduls	Pflichtmodul Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	schriftlich (6 Monate) Die Masterarbeit hat einen Umfang von ca. 60 Seiten zu haben.
11	Berechnung der Modulnote	schriftlich (100%)
12	Turnus des Angebots	in jedem Semester
13	Wiederholung der Prüfungen	Die Prüfungen dieses Moduls können nur einmal wiederholt werden.
14	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 0 h Eigenstudium: 900 h
15	Dauer des Moduls	1 Semester
16	Unterrichts- und Prüfungssprache	Deutsch oder Englisch
17	Literaturhinweise	nach Vorgabe der Betreuerin/des Betreuers der Masterarbeit

1	Modulbezeichnung 65955	Masterseminar Master's seminar	5 ECTS
		Hauptseminar: Masterseminar "Quantitatives Risikomanagement" (2.0 SWS)	5 ECTS
		Masterseminar: Masterseminar (2.0 SWS)	5 ECTS
	Lehrveranstaltungen	Masterseminar: Master seminar "Numerical solutions for eigenvalue problems"	5 ECTS
2		Seminar: Master Seminar "Statistical Foundations of Data Science" (2.0 SWS)	5 ECTS
		Masterseminar: Einführung in die Darstellungstheorie von Quantengruppen (Seminar) (2.0 SWS)	-
		Vorlesung mit Übung: Topics in Time Series Analysis (4.0 SWS)	5 ECTS
		Prof. Dr. Wolfgang Stummer Prof. Dr. Timm Oertel	
3	Lehrende	Prof. Dr. Daniel Tenbrinck	
		Prof. Dr. Marie-Christine Düker Prof. Dr. Peter Fiebig	

4	Modulverantwortliche/r	Prof. Dr. Timm Oertel	
5	Inhalt	Die aktuell angebotenen Themen werden von den Dozenten rechtzeitig bekannt gegeben.	
Die Studierenden • erarbeiten sich vertiefende Fachkompeten. Teilgebiet der Mathematik; • analysieren Fragestellungen und Probleme gewählten Teilgebiet der Mathematik und Iv wissenschaftlichen Methoden; • verwenden relevante Präsentations- und Kommunikationstechniken und präsentiere mathematischen Sachverhalte in mündlich Form; • tauschen sich untereinander und mit den E über Informationen, Ideen, Probleme und I		 erarbeiten sich vertiefende Fachkompetenzen in einem Teilgebiet der Mathematik; analysieren Fragestellungen und Probleme aus dem gewählten Teilgebiet der Mathematik und lösen diese mit wissenschaftlichen Methoden; verwenden relevante Präsentations- und Kommunikationstechniken und präsentieren die mathematischen Sachverhalte in mündlicher und schriftlicher 	
7	Voraussetzungen für die Teilnahme	Vorgaben der Dozierenden als dringende Empfehlung	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Pflichtmodul Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	Seminarleistung Seminarleistung (Vortrag 30-80 Min), ggf. mit Ausarbeitung (ca. 5-10 Seiten)	

11	Berechnung der Modulnote	Seminarleistung (100%)
12	Turnus des Angebots	in jedem Semester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	nach Vorgabe der Dozentin/des Dozenten

Studienrichtung Stochastik und Risikomanagement

Stand: 05. September 2024

1	Modulbezeichnung 65702	Lektüre von Arbeiten zur Risikoanalyse (LektRA) Reading course on risk analysis (LektRA)	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Stummer	
5	Inhalt	Neuere Arbeiten aus der Risikoanalyse (inklusive angrenzende Bereiche aus der Künstlichen Intelligenz und Machine Learning) nach jeweils besonderer Ankündigung.	
6	Lernziele und Kompetenzen	 Die Studierenden arbeiten mit neuer wissenschaftlicher Literatur auf einem Spezialgebiet der Risikoanalyse (inklusive angrenzende Bereiche aus der Künstlichen Intelligenz und Machine Learning); verwenden relevante Präsentations- und Kommunikationstechniken und präsentieren mathematische Sachverhalte und diskutieren diese kritisch; tauschen sich untereinander und mit den Dozenten über Informationen, Ideen, Probleme und Lösungen auf wissenschaftlichem Niveau aus. 	
7	Voraussetzungen für die Teilnahme	empfohlen: Kenntnisse in Wahrscheinlichkeitstheorie	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	Seminarleistung Vortrag (60 Min) und schriftliche Ausarbeitung (5-15 Seiten)	
11	Berechnung der Modulnote	Seminarleistung (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h	
14 Dauer des Moduls 1 Semester 15 Unterrichts- und Prüfungssprache Deutsch		1 Semester	
		Deutsch	
16	Literaturhinweise	werden zu Beginn der Veranstaltung bekannt gegeben	

1	Modulbezeichnung 65861	Hauptseminar Quantitatives Risikomanagement Advanced seminar: Quantitative risk management	5 ECTS
2	Lehrveranstaltungen	Hauptseminar: Masterseminar "Quantitatives Risikomanagement" (2.0 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Wolfgang Stummer	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Stummer	
5	Inhalt	Die aktuellen, definitiven Inhalte werden vom Dozenten zeitnah veröffentlicht. Des Weiteren dient das Hauptseminar als methodische und arbeitstechnische Vorbereitung für die anschließend abzulegende Masterarbeit.	
6	Lernziele und Kompetenzen	 Poie Studierenden erarbeiten ein sehr fortgeschrittenes Teilgebiet des stochastisch-quantitativen Risikomanagements; verwenden relevante Präsentations- und Kommunikationstechniken für mathematische Sachverhalte in mündlicher und schriftlicher Form und perfektionieren diese; formulieren hochentwickelte unsicherheitsbehaftete wirtschaftswissenschaftlich relevante Phänomene mathematisch präzise. tauschen sich untereinander und mit den Dozenten über Informationen, Ideen, Probleme und Lösungen auf wissenschaftlichem Niveau aus. 	
7	Voraussetzungen für die Teilnahme	empfohlen: • Kenntnisse der Module Fortgeschrittene Risikoanalyse 1, Fortgeschrittene Risikoanalyse 2.	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	Seminarleistung Vortrag (60 Min) und schriftliche Ausarbeitung (5-15 Seiten)	
11	Berechnung der Modulnote	Seminarleistung (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Die zugrundeliegenden Vortragsunterlagen werden vom jeweiligen Dozenten im Voraus (bei der Vorbesprechung) ausgehändigt.	

1	Modulbezeichnung 65918	Robust optimization II	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann	
5	Inhalt	In practice, provided data for mathematical optimization problems is often not fully known. Robust optimization aims at finding the best solution which is feasible for input data varying within certain tolerances. The lecture covers advanced methods of robust optimization in theory and modeling. In particular, robust network flows, robust integer optimization and robust approximation are included. Further, state-of-theart concepts, e.g., "light robustness" or "adjustable robustness" will be discussed by means of real-world applications.	
6	Lernziele und Kompetenzen	 will be able to identify complex optimization problems under uncertainties as well as suitably model and analyze the corresponding robust optimization problem with the help of advanced techniques of robust optimization, learn the handling of appropriate solving techniques and how to analyze the corresponding results. 	
7	Voraussetzungen für die Teilnahme	Recommended: Robust Optimization I	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	

16	Literaturhinweise	 Lecture notes, will be published on StudOn at the beginning of the semester.
----	-------------------	--

	1	Modulbezeichnung 65950	Seminar	5 ECTS
	2	Lehrveranstaltungen	Hauptseminar: Seminar zur Topologie (2.0 SWS) Seminar: Seminar Optimization	5 ECTS 5 ECTS
;	3	Lehrende	Prof. Dr. Kang Li Prof. Dr. Timm Oertel	

4	Modulverantwortliche/r	Prof. Dr. Timm Oertel	
5	Inhalt	Die aktuell angebotenen Themen werden von den Dozenten rechtzeitig bekannt gegeben.	
6	Lernziele und Kompetenzen	 erarbeiten sich vertiefende Fachkompetenzen in einem Teilgebiet der Mathematik; analysieren Fragestellungen und Probleme aus dem gewählten Teilgebiet der Mathematik und lösen diese mit wissenschaftlichen Methoden; verwenden relevante Präsentations- und Kommunikationstechniken und präsentieren die mathematischen Sachverhalte in mündlicher und schriftlicher Form; tauschen sich untereinander und mit den Dozenten über Informationen, Ideen, Probleme und Lösungen auf wissenschaftlichem Niveau aus. 	
7	Voraussetzungen für die Teilnahme	nach Vorgabe der Dozentin/des Dozenten	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	Seminarleistung Vortrag (60 Min) und schriftliche Ausarbeitung (5-15 Seiten)	
11	Berechnung der Modulnote	Seminarleistung (100%)	
12	Turnus des Angebots	in jedem Semester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch oder Englisch	
16	Literaturhinweise		

1	Modulbezeichnung 65951	Fortgeschrittene Risikoanalyse 2 Advanced risk analysis 2	10 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	•	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Stummer	
5	Inhalt	Die aktualisierten definitiven Inhalte werden zeitnah veröffentlicht. Exemplarisch seien hier angeführt: Fortgeschrittene zeitdiskrete Risikoprozesse; fortgeschrittene zeitkontinuierliche Risikoprozesse. Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur.	
6	Lernziele und Kompetenzen	Die Studierenden erlernen und verwenden aktuelle, vielseitig nutzbare, sehr fortgeschrittene Methoden zur Lösung von zeitgemäßen Problemstellungen aus der Quantifizierung von unsicherheitsbehafteten Fakten, Vorgängen und darauf aufbauenden Entscheidungen.	
7	Voraussetzungen für die Teilnahme	empfohlen: • Fundierte Grundkenntnisse der Stochastik und der Integrationstheorie.	
8	Einpassung in Studienverlaufsplan	Semester: 2	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich (20 Minuten)	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 225 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Manuskript des DozentenWeitere Literatur wird in der Vorlesung bekanntgegeben.	

1	Modulbezeichnung 65963	Fortgeschrittene Risikoanalyse 1 Advanced risk analysis 1	10 ECTS
2	Lehrveranstaltungen	Vorlesung: Fortgeschrittene Risikoanalyse 1 (4.0 SWS) Übung: Übungen zu Fortgeschrittene Risikoanalyse 1 (1.0 SWS)	10 ECTS
3	Lehrende	Prof. Dr. Wolfgang Stummer	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Stummer
5	Inhalt	Die aktualisierten definitiven Inhalte werden zeitnah veröffentlicht.Exemplarisch seien hier angeführt: • Anwendungsbezogene Motivationen aus der Risikoanalyse; • zeitdiskrete Risikoprozesse; • zeitkontinuierliche Risikoprozesse. Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur und der Bearbeitung von speziell abgestimmten zugehörigen Seminarthemen, unterstützt durch Zusammenkünfte innerhalb des Seminars.
6	Lernziele und Kompetenzen	Die Studierenden erlernen und verwenden aktuelle, vielseitig nutzbare, fortgeschrittene Methoden zur Lösung von zeitgemäßenProblemstellungen aus der Quantifizierung von unsicherheitsbehafteten Fakten, Vorgängen und darauf aufbauenden Entscheidungen.
7	Voraussetzungen für die Teilnahme	empfohlen: Fundierte Grundkenntnisse der Stochastik und der Integrationstheorie.
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 20 Min.
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 225 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Manuskript des DozentenWeitere Literatur wird in der Vorlesung bekanntgegeben.

1	Modulbezeichnung 65969	Mathematische Statistik Mathematical statistics	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	apl. Prof. Dr. Christophorus Richard
5	Inhalt	 Parameterschätzung Konfidenzbereiche Hypothesentests Die Präsentation des Stoffes erfolgt in Vorlesungsform. In der Übung vertiefen Lösungen typischer Beispiele das Verständnis des Vorlesungsstoffs.
6	Lernziele und Kompetenzen	Die Studierenden erklären und verwenden mathematische Grundlagen der Statistik. Sie entwickeln Lösungsmethoden für einfache statistische Problemstellungen eigenständig.
7	Voraussetzungen für die Teilnahme	Stochastische Modellbildung sowie Maßtheorie (Analysis III),Grundkenntnisse in Wahrscheinlichkeitstheorie
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 15 Min.
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Georgii, Stochastik Casella, Berger, Statistical Inference

1	Modulbezeichnung 65970	Stochastische Analysis Stochastic analysis	5 ECTS
2	Lehrveranstaltungen	Übung: Übung zur Stochastischen Analysis (2.0 SWS) Vorlesung: Stochastische Analysis (2.0 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Torben Krüger	

4	Modulverantwortliche/r	Prof. Dr. Torben Krüger	
5	Inhalt	 Itokalkulus Diffusionsprozesse Stochastische Differentialgleichungen Die Präsentation des Stoffes erfolgt in Vorlesungsform. 	
6	Lernziele und Kompetenzen	Die Studierenden erwerben die Fähigkeit komplexere Strukturen der Stochastik selbständig zu erfassen und auf exemplarische Problemstellungen anzuwenden. Diese bilden eine Basis für eine Spezialisierung in Stochastik undentsprechenden wirtschaftsmathematischen Themen.	
7	Voraussetzungen für die Teilnahme	empfohlen: Kenntnisse der Wahrscheinlichkeitstheorie sind zum Verständnis hilfreich	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 15 Min.	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 37,5 Eigenstudium: 112,5	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	Die vorbereitende Literatur wird für jede Lehrveranstaltung jedes Semester neu festgelegt.	

1	Modulbezeichnung 924407	Lektüre von Arbeiten zur Stochastik Reading course: Stochastics	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Stummer	
5	Inhalt	Neuere Arbeiten aus der Stochastik nach jeweils besonderer Ankündigung.	
6	Lernziele und Kompetenzen	 Die Studierenden arbeiten mit neuer wissenschaftlicher Literatur auf einem Spezialgebiet der Stochastik verwenden relevante Präsentations- und Kommunikationstechniken und präsentieren mathematische Sachverhalte und diskutieren diese kritisch. tauschen sich untereinander und mit den Dozenten über Informationen, Ideen, Probleme und Lösungen auf wissenschaftlichem Niveau aus. 	
7	Voraussetzungen für die Teilnahme	empfohlen: Kenntnisse in Wahrscheinlichkeitstheorie und stochastischer Analysis	
8	Einpassung in Studienverlaufsplan	Semester: 2;1;2	
9	Verwendbarkeit des Moduls	Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	in jedem Semester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	wird zu Beginn der Veranstaltung bekannt gegeben	

1	Modulbezeichnung 65065	Fortgeschrittene Themen der Stochastik Advanced topic in probability	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	•	

4	Modulverantwortliche/r	Prof. Dr. Torben Krüger	
5	Inhalt	 Themen, welche die in den vorbereitenden Vorlesungen erworbenen Basiskenntnisse der Stochastik vertiefen. Anwendungsfelder der Wahrscheinlichkeitstheorie Zusammenhang zwischen Stochastik und anderen Themenbereichen der Mathematik Analytische Methoden in der Stochastik Die Prasentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Präsenzübungen und Hausaufgaben. Topics that deepen the basic knowledge of stochastics acquired in the preparatory lectures. Fields of application of probability theory Relationship between stochastics and other areas of mathematics Analytical methods in stochastics The material is presented in lecture form. Further acquisition of the essential concepts and techniques takes place through classroom exercises and homework. 	
6	Lernziele und Kompetenzen	 Die Studierenden wenden die formalen Grundlagen der Wahrscheinlichkeitstheorie an und übertragen diese auf fortgeschrittene Themenbereiche erfassen und formulieren randomisierte Phañomene mathematisch. nennen und erklaren die wichtigsten stochastischmathematischen Objekte, die in den Anwendungen eine Rolle spielen. sammeln und bewerten relevante Informationen und erkennen Zusammenhange zu anderen mathematischen Themenfeldern. klassifizieren und losen selbststandig Probleme analytisch. The students apply the formal foundations of probability theory and transfer them to advanced subject areas grasp and formulate randomized phenomena mathematically. 	

		 name and explain the most important stochastic mathematical objects that play a role in the applications. collect and evaluate relevant information and recognize connections to other mathematical topics. independently classify and solve problems analytically. 	
7	Voraussetzungen für die Teilnahme	empfohlen: Wahrscheinlichkeitstheorie, sowie Grundlagen in Analysis und Linearer Algebra recommended: Probability theory, as well as basics in analysis and linear algebra	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192 - M. Sc. Mathematik (Theoretische Mathematik, Angewandte Mathematik) - M.Sc. Wirtschaftsmathematik - M.Sc. Data Science - M.Sc. Technomathematik - B. Sc. Mathematik	
10	Studien- und Prüfungsleistungen	mündlich (20 Minuten) • Übungsleistungen (unbenotet) • Mündliche Prüfung (20 min) • weekly assignments (ungraded) • oral exam (20 min)	
11	Berechnung der Modulnote	mündlich (100%) Mündliche Prüfung (100%) Oral Exam (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 52 h Eigenstudium: 98 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch oder Englisch	
16	Literaturhinweise		

Studienrichtung Optimierung und Prozessmanagement

Stand: 05. September 2024

1	Modulbezeichnung 65086	Convex Geometry and Applications Convex geometry and applications	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Timm Oertel	
5	Inhalt	The module comprises of two parts. The first part is a general introduction to convex geometry, where basic concepts and tools will be introduced, such as separation and the classical results of Carathéodory, Helly, and Radon. The second part will be more specialized, focusing on ellipsoids, including ellipsoidal approximation and volume concentration. Applications in optimization and data science will be highlighted throughout.	
6	Lernziele und Kompetenzen	Students will learn the foundations of classical convex geometry apply concepts and tools from convex geometry to modern applications in optimization and data science	
7	Voraussetzungen für die Teilnahme	Linear algebra and calculus are required. Basic knowledge in probability theory is recommended.	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise		

1	Modulbezeichnung 65723	Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data Analytics II Mathematical foundations of Artificial Intelligence, Neural Networks and Data Analytics II	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Dr. Hans Georg Zimmermann
5	Inhalt	The focus of this lecture is on the analysis of dynamical systems, or on data which are generated by dynamical systems. Time is a strong structure in modelling, which allows an in depth structural analysis before we touch data. An example is the following question: in which way influences past the present time?. The answer is a modelling of memory: how can we do this in an efficient way?. Large dynamical system (especially in economics) are only partially observable: how to handle the missing information?. In which way learning is helpful to solve this problem?. In many real world applications the dimensionality of the observables and even more the underlying state space is very large – if the dynamics evolves along a manifold in these large spaces, how can we use the manifold to make the task tractable?. In different coordinate systems the same observed dynamics might look different complicated: what is an optimal coordinate system to do the analysis and forecasting of a dynamical system?. A question which is always popping up in the challenge of forecasting is on the minimal number of observables: which are the relevant ones?. And Last but not least, if you do a prediction, are you able to say something about the uncertainty of the forecast?. In our neural network framework we can define descriptions of uncertainties beyond an expanding normal distribution. In the context of artificial intelligence it is natural, not only to ask for a good modelling but a combined optimal action planning. In which way we merge model building and action planning? Finally we will touch the discussion between artificial intelligence entities and humans.
6	Lernziele und Kompetenzen	The students independently recognize tasks in which neural networks are a helpful solution method and are able to construct the correct network structures for real application problems.
7	Voraussetzungen für die Teilnahme	Mathematical basics from the bachelor's degree. It is recommended to have attended the lecture during the winter semester. (Part I).
8	8 Einpassung in Studienverlaufsplan keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192

10	Studien- und Prüfungsleistungen	mündlich (15 Minuten) The lecture is planned as a block lecture exactly one week before the normal lecture period starts. Details can be found in the StudOn group.
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Lecture slides

1	Modulbezeichnung 65862	Conic Optimization and Applications Conic optimisation and applications	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Conic Optimization and Applications (2.0 SWS) Übung: Übung Conic Optimization and Applications (2.0 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Giovanni Fantuzzi	

4	Modulverantwortliche/r	Prof. Dr. Jan Rolfes	
5	Inhalt	In modern Convex Optimization the theory of semidefinite optimization plays a central role. Semidefinite optimization is a generalization of linear optimization, where one wants to optimize linear functions over positive semidefinite matrices restricted by linear constraints. A wide class of convex optimization problems can be modeled using semidefinite optimization. On the one hand, there are algorithms to solve semidefinite optimization problems, which are efficient in theory and practice. On the other hand, semidefinite optimization is a tool of particular usefulness and elegance. Overview of topics: Topological properties of cones Foundations of conic optimization, theorems of the alternative, duality Applications in Eigenvalue optimization and robust optimization Approximations of combinatorial optimization problems such as MAXCUT, packing problems, coloring problems, Shannon capacity Symmetry reduction of optimization	
6	Lernziele und Kompetenzen	 Students gain insight of the fundamental concepts in conic optimization apply algorithmic techniques to problems in the fields of combinatorics, geometry and algebra extend their expertise in geometry, in particular about the interplay between the fields of geometry and optimization 	
7	Voraussetzungen für die Teilnahme	Recommended: at least one of the modules Linear and combinatorial optimization, robust optimization, discrete optimization	
8	Einpassung in Studienverlaufsplan	Semester: 1;3	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 15 Min.	
11	Berechnung der Modulnote	mündlich (100%)	

12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	M. Laurent, F. Vallentin: lecture notes http://www.mi.uni-koeln.de/opt/wp-content/uploads/2015/10/ laurent_vallentin_sdo_2012_05.pdf Further literature and scientific publications are announced during the lectures	

1	Modulbezeichnung 65915	Introduction to material- and shape optimization	10 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Prof. Dr. Michael Stingl	
5	Inhalt	 shape-, material- and topology optimization models linear elasticity and contact problems existence of solutions of shape, material and topology optimization problems approximation of shape, material and topology optimization problems by convergent schemes 	
6	Lernziele und Kompetenzen	 Students derive mathematical models for shape-, material and topology optimization problems, apply regularization techniques to guarantee to existence of solutions, approximate design problems by finite dimensional discretizations, derive algebraic forms and solve these by nonlinear programming techniques. 	
7	Voraussetzungen für die Teilnahme	Recommended: • Knowledge in nonlinear optimization, • Basic knowledge in numerics of partial differential equations	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 225 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	J. Haslinger & R. Mäkinen: Introduction to shape optimization, SIAM,	

M. P. Bendsoe & O. Sigmund: Topology Optimization: Theory,
Methods and Applications, Springer.

1	Modulbezeichnung 65917	Discrete optimization I	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Discrete Optimization I (2.0 SWS) Übung: Tutorial zu Discrete Optimization I (1.0 SWS)	5 ECTS
3	Lehrende	Kevin-Martin Aigner	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann
5	Inhalt	Theoretical and practical fundamentals of solving difficult mixed-integer linear optimization problems (MIPs) constitute the main focus of this lecture. At first, the concept of NP-completeness and a selection of common NP-complete problems will be presented. As for polyhedral theory, fundamentals concerning the structure of faces of convex polyhedra will be covered. Building upon these fundamentals, cutting plane algorithms as well as branch-and-cut algorithms for solving MIPs will be taught. Finally, some typical problems of discrete optimization, e.g., the knapsack problem, the traveling salesman problem or the set packing problem will be discussed.
6	Lernziele und Kompetenzen	Students will gain basic theoretical knowledge of solving mixed-integer linear optimization problems (MIPs), are able to solve MIPs with the help of state-of-the-art optimization software.
7	Voraussetzungen für die Teilnahme	Recommended: Linear and Combinatorial Optimization
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	mündlich
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Englisch
16	Literaturhinweise	

1	Modulbezeichnung 65918	Robust optimization II	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann	
5	Inhalt	In practice, provided data for mathematical optimization problems is often not fully known. Robust optimization aims at finding the best solution which is feasible for input data varying within certain tolerances. The lecture covers advanced methods of robust optimization in theory and modeling. In particular, robust network flows, robust integer optimization and robust approximation are included. Further, state-of-theart concepts, e.g., "light robustness" or "adjustable robustness" will be discussed by means of real-world applications.	
6	Lernziele und Kompetenzen	 will be able to identify complex optimization problems under uncertainties as well as suitably model and analyze the corresponding robust optimization problem with the help of advanced techniques of robust optimization, learn the handling of appropriate solving techniques and how to analyze the corresponding results. 	
7	Voraussetzungen für die Teilnahme	Recommended: Robust Optimization I	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	

16	Literaturhinweise	Lecture notes, will be published on StudOn at the beginning of the semester.
----	-------------------	---

1	Modulbezeichnung 65926	Dualität und Optimierung Duality and optimisation	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Achtziger	
5	Inhalt	Lagrange-Dualität der endlichdimensionalen Nichtlinearen Optimierung, Optimalitätsbedingungen und Sattelpunktkriterien, Bearbeitung des dualen Problems, eigentlich konvexe Funktionen, konjugierte Funktionen, konjugierte Mengen, Fenchel-Dualität Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur, unterstützt durch Zusammenkünfte innerhalb der Übungen.	
6	Lernziele und Kompetenzen	 Die Studierenden kennen verschiedene Typen dualer Optimierungsprobleme. Für gegebene abstrakte oder konkrete Optimierungsmodelle können sie diese dualen Probleme errechnen, bearbeiten und lösen. Die Betrachtung und das Verständnis dualer Probleme ist grundlegend in der Modellierung und in der numerischen Bearbeitung von Fragestellungen der Natur-, Wirtschafts- und Ingenieurwissenschaften. 	
7	Voraussetzungen für die Teilnahme	 empfohlen: Abschluss des Bachelor-Moduls Nichtlineare Optimierung und Abschluss des Moduls Vertiefte Nichtlineare Optimierung (oder Optimierung in normierten Räumen) 	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 15 Min.	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 37,5 Eigenstudium: 112,5	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

16 Literaturhinweise	 M.S. Bazaraa, H.D. Sherali, C.M. Shetty: Nonlinear Programming, Theory and Algorithms, Wiley, 2005 JB. Hiriart-Urruty, C. Lemarechal: Convex Analysis and Minimization Algorithms II, Springer, 1993 R.T. Rockafellar, R.JB. Wets: Variational Analysis, Springer, 2009
----------------------	---

1	Modulbezeichnung 65933	Discrete optimization II	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Prof. Dr. Timm Oertel	
5	Inhalt	In this lecture, we cover theoretical aspects and solution strategies for difficult integer and mixed-integer optimization problems. First, we show the equivalence between separation and optimization. Then, we present solution strategies for large-scale optimization problems, e.g., decomposition methods and approximation algorithms. Finally, we deal with conditions for the existence of integer polyhedra. We also discuss applications for example from the fields of engineering, finance, energy or public transport.	
6	Lernziele und Kompetenzen	Students use basic terms of discrete optimization model real-world discrete optimization problems, determine their complexity and solve them with appropriate mathematical methods.	
7	Voraussetzungen für die Teilnahme	Recommended: Knowledge in linear and combinatorial optimization, discrete optimization I	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	 Lecture notes Bertsimas, Weismantel: Optimization over Integers, Dynamic Ideas, 2005 	

 Conforti, Cornuéjols, Zambelli: Integer Programming, Springer 2014 Nemhauser, Wolsey: Integer and Combinatorial Optimization, Wiley 1994 Schrijver: Combinatorial optimization Vol. A-C, Springer 2003 Schrijver: Theory of Linear and Integer Programming, Wiley, 1986
Wolsey: Integer Programming, Wiley, 2021

1	Modulbezeichnung 65950	Seminar	5 ECTS
2	Lehrveranstaltungen	Hauptseminar: Seminar zur Topologie (2.0 SWS) Seminar: Seminar Optimization	5 ECTS 5 ECTS
3	Lehrende	Prof. Dr. Kang Li Prof. Dr. Timm Oertel	

4	Modulverantwortliche/r	Prof. Dr. Timm Oertel
5	Inhalt	Die aktuell angebotenen Themen werden von den Dozenten rechtzeitig bekannt gegeben.
6	Lernziele und Kompetenzen	 erarbeiten sich vertiefende Fachkompetenzen in einem Teilgebiet der Mathematik; analysieren Fragestellungen und Probleme aus dem gewählten Teilgebiet der Mathematik und lösen diese mit wissenschaftlichen Methoden; verwenden relevante Präsentations- und Kommunikationstechniken und präsentieren die mathematischen Sachverhalte in mündlicher und schriftlicher Form; tauschen sich untereinander und mit den Dozenten über Informationen, Ideen, Probleme und Lösungen auf wissenschaftlichem Niveau aus.
7	Voraussetzungen für die Teilnahme	nach Vorgabe der Dozentin/des Dozenten
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192 Studienrichtung Stochastik und Risikomanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	Seminarleistung Vortrag (60 Min) und schriftliche Ausarbeitung (5-15 Seiten)
11	Berechnung der Modulnote	Seminarleistung (100%)
12	Turnus des Angebots	in jedem Semester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch oder Englisch
16	Literaturhinweise	

1	Modulbezeichnung 65952	Nichtglatte Optimierung (nicht vertieft) Nonsmooth optimization (not advanced)	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Achtziger	
5	Inhalt	Auftreten nichtglatter Probleme, Vertiefung der Theorie zu konvexen Funktionen, lokal Lipschitz-stetige Funktionen, Subdifferential, Einblick in Subgradienten-Algorithmen etc. Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur, unterstützt durch Zusammenkünfte innerhalb der Übungen	
6	Lernziele und Kompetenzen	Die Studierenden erklären und verwenden Theorie und Funktionsweisen von numerischen Verfahren der Nichtglatten Optimierung (nicht vertieft). Die Studierenden stellen Probleme der nichtglatten Optimierung auf, untersuchen sie mathematisch und entwickeln numerische Lösungsmethoden, welche sie schließlich anwenden. Diese Fähigkeiten sind in naturwissenschaftlichen, medizinischen, wirtschaftswissenschaftlichen und technischen Anwendungen von Bedeutung.	
7	Voraussetzungen für die Teilnahme	empfohlen: • Beherrschung grundlegender Theorie und Methodiken der Nichtlinearen Optimierung aus den Bachelor-Studiengängen Mathematik, Technomathematik, Wirtschaftsmathematik (z.B. Abschluss des Moduls Nichtlineare Optimierung) oder Abschluss des Master-Moduls Optimierung in normierten Räumen	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 15 Min.	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 37,5 Eigenstudium: 112,5	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

16 Literaturhinweise	 W. Alt: Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004 J.P. Hiriart-Urruty, C. Lemarechal: Fundamentals of Convex Analysis, Springer, 2001 M.M. Mäkelä, P. Neittaanmäki: Nonsmooth Optimization Analysis and Algorithms with Application to Optimal Control, World Scientific, 1992
----------------------	---

1	Modulbezeichnung 65954	Numerik der Optimalen Steuerungen Numerics of optimal control	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Prof. Dr. Hannes Meinlschmidt
5	Inhalt	The following topics are covered: Discretization methods for differential equations, aspects of nonlinear optimization methods, direct discretization methods (fully and reduced discretized), indirect methods based on discretization of necessary optimality conditions as well as methods for efficient sensitivity calculations with internal numerical differentiation and adjoint equations. The material is presented in lecture form. Further acquisition of the essential concepts and techniques takes place through self-study of accompanying literature and the completion of exercises, supported by meetings within the tutorials. By default, the lecture will be given in English (in German only if all participants agree).
6	Lernziele und Kompetenzen	Students explain and use numerical methods for optimal control problems with ordinary differential equations and differential algebraic equations. They apply basic concepts of solution methodology using direct and indirect discretization methods for application problems, for example in technology or economics.
7	Voraussetzungen für die Teilnahme	Recommended: Basic knowledge in numerics, in theory of ordinary differential equations, and in optimization.
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 15 Min.
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	Unregelmäßig

13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Englisch
16	Literaturhinweise	M. Gerdts, Optimal Control of ODEs and DAEs, De Gruyter, 2012.

1	Modulbezeichnung 65958	Shape Optimization Shape optimization	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Michael Stingl	
4	would we are worth cheff	-	
5	Inhalt	 Grundlagen zu folgenden Themen: Modellierung Exemplarische Entwicklung anhand eindimensionaler Beispiele Form- und Toplogieoptimierung auf metrischen Graphen Elliptische Probleme Stokes-Problem Numerische Simulation Anwendungen Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur, unterstützt durch Zusammenkünfte innerhalb der Übungen. 	
6	Lernziele und Kompetenzen	Die Studierenden erlernen theoretische und numerische Fähigkeiten im Umgang mit der Formoptimierung. Diese Fähigkeiten sind insbesondere für technische und wirtschaftswissenschaftliche Anwendungen von Bedeutung.	
7	Voraussetzungen für die Teilnahme	empfohlen: • Grundkenntnisse der Numerik, der gewöhnlichen Differentialgleichungen und der Optimierung	
8	Einpassung in Studienverlaufsplan	Semester: 2	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich mündliche Prüfung (15 Minuten)	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 37,5 Eigenstudium: 112,5	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	

16	Literaturhinweise	 Sokolowski/Zolesio: Introduction to shape optimization; Springer-Verlag 2000 Leugering/Sokolowski/Zochowski: Introduction to Numerical Methods of Shape Optimization; Skript 2018
----	-------------------	--

1	Modulbezeichnung 65959	Theorie der Optimalsteuerungen Optimal control theory	10 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Hannes Meinlschmidt	
5	Inhalt	 Grundlagen zu folgenden Themen: Diskrete und kontinuierliche Dynamische Systeme in allgemeinen Räumen Eingabe- und Ausgabeoperatoren, Beobachter und Aktuatoren Lösungstheorie und qualitative Theorie Steuerbarkeit und Stabilisierbarkeit Restriktionen für Steuerungen und Zuständen Open-Loop- und Closed-Loop-Steuerungen Pontriagin'sches Maximum-Prinzip Dynamische Programmierung Numerische Realisierung optimaler Steuerungen Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur, unterstützt durch Zusammenkünfte innerhalb der Übungen. 	
6	Lernziele und Kompetenzen	Die Studierenden erklären und verwenden eine vertiefte Theorie und vertiefte numerische Methoden im Umgang mit der Steuerung, Stabilisierung und Optimalsteuerung im Kontext der gewöhnlichen Differentialgleichungen. Diese Fähigkeiten sind sowohl in naturwissenschaftlichen, medizinischen, wirtschaftswissenschaftlichen als auch und insbesondere in Ingenieuranwendungen von Bedeutung.	
7	Voraussetzungen für die Teilnahme	empfohlen: • Grundkenntnisse der Numerik, der gewöhnlichen und partiellen Differentialgleichungen, der Optimierung	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich mündliche Prüfung (20 Min)	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	

13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 225 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 E. Sontag, Mathematical Control Theory, Springer-Verlag 2000 F. Tröltzsch, Steuerungstheorie Partieller Differenialgleichungen, Vieweg Verlag, 2003

1	Modulbezeichnung 65960	Vertiefte Nichtlineare Optimierung Advanced nonlinear optimisation	10 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	•	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Achtziger	
5	Inhalt	Vertiefung von Optimalitätsbedingungen für restringierte Probleme, Vertiefung der Theorie und Algorithmen zu Barriere- und Penalty-Verfahren, erweiterte Penalty-Funktionen, Innere-Punkte-Methoden, Quadratische Optimierung, SQP-Verfahren, Einblick in spezielle Problemklassen und Optimierungsverfahren (z.B. Semidefinite Programmierung oder Conic Programming). Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur, unterstützt durch Zusammenkünfte innerhalb der Übungen.	
6	Lernziele und Kompetenzen	Die Studierenden erklären und erweitern die Grundlagen zur Theorie und zu numerischen Verfahren der Nichtlinearen Optimierung, erklären und verwenden grundlegende Konzepte von Lösungsmethoden und modellieren und lösen Anwendungsprobleme, etwa aus Technik oder Ökonomie, mathematisch korrekt.	
7	Voraussetzungen für die Teilnahme	empfohlen: • Beherrschung grundlegender Theorie und Methodiken der Nichtlinearen Optimierung aus den Bachelor-Studiengängen Mathematik, Technomathematik, Wirtschaftsmathematik (z.B. Abschluss des Moduls Nichtlineare Optimierung) oder Abschluss des Master-Moduls Optimierung in normierten Räumen	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 20 Min.	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden		
14	Dauer des Moduls	1 Semester	

15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	 Geiger, Ch. Kanzow: Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer, 1999 Geiger, Ch. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben, Springer, 2002 W. Alt: Nichtlineare Optimierung, Vieweg, 2002 F. Jarre und J. Stoer: Optimierung. Springer, 2004 M.S. Bazaraa, H.D. Sherali, C.M. Shetty: Nonlinear Programming Theory and Algorithms, Wiley, New York, 1993

1	Modulbezeichnung 65984	Advanced Algorithms for Nonlinear Optimization (AlgNOpt)	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Michael Stingl	
5	Inhalt	Several of the following topics: Trust region methods Iterative methods in the presence of noisy data Interior point methods for nonlinear problems Modified barrier and augmented Lagrangian methods Local and global convergence analysis	
6	Lernziele und Kompetenzen	 • use methods of nonlinear constrained optimization in finite dimensional spaces, • analyse convergence behaviour of these methods and derive robust and efficient realisations, • apply these abilities to technical and economic applications. 	
7	Voraussetzungen für die Teilnahme	Basic knowledge in nonlinear optimization is recommended.	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich (15 Minuten)	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 37,5 Eigenstudium: 112,5	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	 C.T. Kelley: Iterative Methods for Optimization, SIAM, J. Nocedal & S. Wright: Numerical Optimization, Springer. 	

1	Modulbezeichnung 65986	Advanced Nonlinear Optimization (AdvNLOpt)	10 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Achtziger	
5	Inhalt	 advanced optimality conditions and constraint qualifications for constrained optimization problems penalty, barrier and augmented Lagrangian methods: theory and algorithms interior point methods sequential quadratic programming 	
6	Lernziele und Kompetenzen	explain and extend their knowledge on theory and algorithms of nonlinear optimization problems, apply solution techniques to different advanced types of optimization problems, derive and solve optimization problems arising from technical and economical applications.	
7	Voraussetzungen für die Teilnahme	Basic knowledge in nonlinear optimization is recommended.	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich Oral examination (20 min)	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 225 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	 M.S. Bazaraa, H.D. Sherali & C.M. Shetty: Nonlinear Programming Theory and Algorithms, Wiley, New York, J. Nocedal & S. Wright: Numerical Optimization, Springer. 	

1	Modulbezeichnung 65923	Optimization in industry and economy	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann	
5	Inhalt	This course focuses on modeling and solving real-world optimization problems occurring in industry and economics. Advantages and disadvantages of different modeling techniques will be outlined. In order to achieve efficient solution approaches, different reformulations and their numerical results will be discussed. Students will learn how to present optimization results properly as well as how to interpret and evaluate these results for practical applications. The latter may include but is not limited to the optimization of transport networks (gas, water, energy), air traffic management and mathematical modeling/optimization of market mechanisms in the energy sector.	
6	Lernziele und Kompetenzen	Students • model complex real-world optimization problems with respect to efficient • solvability, • classify the models and use appropriate solution strategies, • evaluate the achieved computational results.	
7	Voraussetzungen für die Teilnahme	Recommended: Modul LKOpt: Linear and combinatorial optimization	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h	

14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	 Lecture notes (will be published on StudOn at the beginning of the semester) Up-to-date research literature (will be published on StudOn at the beginning of the semester) 	

1	Modulbezeichnung 65082	Algorithmic Game Theory Algorithmic game theory	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Prof. Dr. Sascha Kurz	
5	Inhalt	The main goal of this course is to highlight the intriguing interplay between optimality, simplicity, efficiency and robustness in the design and analysis of systems involving many different selfish strategic players, with an emphasis in the intersection between Economics and Algorithmic Theory. Can we predict the possible outcomes of such dynamic situations? Can we motivate the players and design specific rules, so that those outcomes are stable and desirable? How well and how efficiently can we approximate the above objectives? These questions are very important and relevant in many modern, real-life applications, where the Internet has been established as the main platform for agent-interaction and computing.	
6	Lernziele und Kompetenzen	 Upon successful completion of this module, students have a comprehensive understanding of the foundations of algorithmic game theory and algorithmic mechanism design. Potential topics include: quantifying the loss in performance of a system due to selfish behaviour (price of anarchy), most notably in traffic routing understanding the concept of differentiating between various equilibria outcomes and selecting the desired ones (potentials and equilibrium refinement) understanding the concept of learning dynamics in gameplaying, such as best-responses designing and analysing efficient mechanisms for various settings involving rational selfish players, most notably Bayesian revenue-maximizing auctions. 	
7	Voraussetzungen für die Teilnahme	Recommended: Basic knowledge of	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich (15 Minuten) Oral exam (30 minutes)	

Stand: 05. September 2024

11	Berechnung der Modulnote	mündlich (100%) Oral exam (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Englisch
16	Literaturhinweise	 T. Roughgarden, "Twenty Lectures on Algorithmic Game Theory", Cambridge University Press, 2016. Nisan, Roughgarden, Tardos & Vazirani (Eds), "Algorithmic Game Theory", Cambridge University Press, 2007

1	Modulbezeichnung 65910	Discrete optimization III	5 ECTS
2	Lehrveranstaltungen	Übung: Tutorial zu Diskrete Optimierung III (1.0 SWS) Vorlesung: Diskrete Optimierung III (2.0 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Timm Oertel	

4	Modulverantwortliche/r	Prof. Dr. Timm Oertel
	Inhalt	In this lecture we will discuss selected topics in discrete and mixed- integer optimization. Possible topics include lattice methods, integer programming in fixed dimension, recent research on (mixed) integer linear and/or (mixed) integer nonlinear programming and so on. The specific topics may vary and will be announced in due time.
5		FORMERLY: In this lecture, we cover theoretical aspects and solution strategies for difficult integer and mixed-integer optimization problems. First, we show the equivalence between separation and optimization. Then, we present solution strategies for large-scale optimization problems, e.g., decomposition methods and approximation algorithms. Finally, we deal with conditions for the existence of integer polyhedra. We also discuss applications for example from the fields of engineering, finance, energy or public transport.
6	Lernziele und Kompetenzen	students use basic terms of discrete optimization model real-world discrete optimization problems, determine their complexity and solve them with appropriate mathematical methods.
7	Voraussetzungen für die Teilnahme	Recommended: Knowledge in linear and combinatorial optimization, discrete optimization I and II
8	Einpassung in Studienverlaufsplan	Semester: 3
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	mündlich (15 Minuten)
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 45 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester

15	Unterrichts- und Prüfungssprache	Englisch
16	Literaturhinweise	 Lecture notes Bertsimas, Weismantel: Optimization over Integers, Dynamic Ideas, 2005 Conforti, Cornuéjols, Zambelli: Integer Programming, Springer 2014 Nemhauser, Wolsey: Integer and Combinatorial Optimization, Wiley 1994 Schrijver: Combinatorial optimization Vol. A - C, Springer 2003 Schrijver: Theory of Linear and Integer Programming, Wiley, 1986 Wolsey: Integer Programming, Wiley, 2021

1	Modulbezeichnung 65789	Selected Topics in Mathematics of Learning Selected topics in mathematics of learning	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Selected Topics in Mathematics of Learning (2.0 SWS)	5 ECTS
_	Zoni voranotantangon	Übung: Übung Selected Topics in Mathematics of Learning (2.0 SWS)	-
3	Lehrende	Dr. Marius Yamakou	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann
5	Inhalt	Advanced methods of mathematical data science, with a focus on teaching mathematical principles of learning processes.
6	Lernziele und Kompetenzen	Students gain fundamental theoretical knowledge of learning algorithms in Data Science and will be able to apply the methodologies in a Data Science context.
7	Voraussetzungen für die Teilnahme	Basic knowledge in numerical methods and optimization are recommended.
8	Einpassung in Studienverlaufsplan	Semester: 1
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	Klausur (60 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Englisch
16	Literaturhinweise	S. Wright, B. Recht: Optimization for Data Analysis (2022).

1	Modulbezeichnung 65785	Mathematics of Learning Mathematics of learning	5 ECTS
2	Lehrveranstaltungen	Vorlesung: Mathematics of Learning (2.0 SWS) Übung: Übung zu Mathematics of Learning (2.0 SWS)	5 ECTS
3	Lehrende	Prof. Dr. Frauke Liers-Bergmann	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann	
5	Inhalt	 Machine learning: empirical risk minimization, kernel methods and variational models Mathematical aspects of deep learning Ranking problems Mathematical models of network interaction 	
6	Lernziele und Kompetenzen	Students develop understanding of modern big data and state of the art methods to analyze them, apply state of the art algorithms to large data sets, derive models for network / graph structured data.	
7	Voraussetzungen für die Teilnahme	Prerequisites: Basic knowledge in numerical methods and optimization is recommended.	
8	Einpassung in Studienverlaufsplan	Semester: 1;3	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	Klausur (60 Minuten)	
11	Berechnung der Modulnote	Klausur (100%)	
12	Turnus des Angebots	nur im Wintersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h Eigenstudium: 90 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Englisch	
16	Literaturhinweise	 Goodfellow, Bengio, Courville, Deep Learning, MIT Press, 2015 Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, 2008 	

1	Modulbezeichnung 294239	Ausgewählte Kapitel der Nichtlinearen Optimierung Selected chapters of non-linear optimisation.	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Achtziger	
5	Inhalt	 Nichtlineare Optimierungsprobleme mit spezieller mathematischer Struktur äquivalente Problemformulierungen angepasste Lösungsverfahren Die Präsentation des Stoffes erfolgt in Vorlesungsform. Die weitere Aneignung der wesentlichen Begriffe und Techniken erfolgt durch Selbststudium begleitender Literatur, unterstützt durch Zusammenkünfte innerhalb der Übungen. 	
6	Lernziele und Kompetenzen	 Die Studierenden erklären und verwenden fortgeschrittene Methoden in Theorie und Anwendungen von numerischen Verfahren zur Lösung unrestringierter und restringierter nichtlinearer Optimierungsprobleme in endlich-dimensionalen Räumen. Sie können außerdem den Aufwand solcher Berechnungen abschätzen und die dabei auftretenden Schwierigkeiten in Theorie und Numerik einordnen. 	
7	Voraussetzungen für die Teilnahme	empfohlen: Abschluss des Moduls Vertiefte nichtlineare Optimierung	
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 15 Min.	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 37,5 Eigenstudium: 112,5	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	aktuelle Literatur wird zu Beginn der Veranstaltung bekannt gegeben	

1	Modulbezeichnung 407487	Numerical Aspects of Linear and Integer Programming Numerical aspects of linear and integer programming	5 ECTS
2	Lehrveranstaltungen	Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.	
3	Lehrende	-	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann	
5	Inhalt	 Revidiertes Simplexverfahren (mit Schranken) Phase I des Verfahrens Duales Simplexverfahren LP Presolve/Postsolve Skalierung MIP Solution Techniques Die Präsentation des Stoffes erfolgt in Vorlesungsform. In den Übungen werden die Studierenden von einem Übungsgruppenleiter betreut. 	
6	Lernziele und Kompetenzen	Die Studierenden erklären und verwenden im Rahmen der Vorlesung Methoden und numerische Verfahren, die zur Lösung von Linearen und Gemischt-ganzzahligen Programmen in der Praxis Anwendung finden.	
7	Voraussetzungen für die Teilnahme	empfohlen: Lineare Algebra, Lineare und Kombinatorische Optimierung	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10	Studien- und Prüfungsleistungen	mündlich	
11	Berechnung der Modulnote	mündlich (100%)	
12	Turnus des Angebots	nur im Sommersemester	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 36 h Eigenstudium: 114 h	
14	Dauer des Moduls	1 Semester	
15	Unterrichts- und Prüfungssprache	Deutsch	
16	Literaturhinweise	 V. Chvátal: Linear Programming, W. H. Freeman and Company, New York, 1983 L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 1998 	

1	Modulbezeichnung 562819	Projektseminar Optimierung (Master) Optimisation project with computer exercises (Master)	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Frauke Liers-Bergmann	
5	Inhalt	Anhand einer konkreten Anwendung sollen die im Studium bis dahin erworbenen Kenntnisse zu mathematischen Optimierungsmodellen und -methoden umgesetzt werden. Der Inhalt ergibt sich aus einer aktuellen Problemstellung häufig in enger Zusammenarbeit mit einem Industriepartner. Als Beispiele seien genannt die Wasserversorgung einer Stadt, die Gestaltung einer energieeffizienten Fassade eines Bürogebäudes oder das Baustellenmanagement im Schienenverkehr. Das Seminar wird als Projekt durchgeführt. Das heißt, Studierende werden in Teams von bis zu 4 Personen, die in der ersten Woche ausgehändigte Aufgabenstellung im Laufe des Semesters bearbeiten. Am Ende des Semesters werden die Teams ihre Lösungsvorschläge vorstellen und vergleichen.	
6	Lernziele und Kompetenzen	 Die Studierenden führen selbständig in Teams ein größeres Projekt durch, in dem sie eine reale Fragestellung modellieren, Lösungsverfahren entwickeln und implementieren und ihre Ergebnisse auf die Praxis anwenden; präsentieren die Ergebnisse der Projektarbeit und diskutieren diese; tauschen sich untereinander und mit den Dozenten über Informationen, Ideen, Probleme und Lösungen auf wissenschaftlichem Niveau aus. 	
7	Voraussetzungen für die Teilnahme	empfohlen: • Lineare Algebra • Lineare und Kombinatorische Optimierung	
8	Einpassung in Studienverlaufsplan	Semester: 1;2	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	
10 Studien- und mündlich Vortrag 45 Minuten und schriftlich 11 Berechnung der Modulnote mündlich (100%)		mündlich Vortrag 45 Minuten und schriftliche Ausarbeitung 5-10 Seiten	
		mündlich (100%)	
12	Turnus des Angebots	Unregelmäßig	
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h	

Stand: 05. September 2024

Seite 57

14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	werden zu Beginn der Veranstaltung bekannt gegeben

1	Modulbezeichnung 65883	Nichtglatte Optimierung (vertieft) Nonsmooth optimization (advanced)	10 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Prof. Dr. Wolfgang Achtziger
5	Inhalt	Auftreten nichtglatter Probleme, Vertiefung der Theorie zu konvexen Funktionen, lokal Lipschitz-stetige Funktionen, Subdifferential, Subgradienten-Algorithmen, Epsilon-Subdifferential, Bundle-Methoden etc.
6	Lernziele und Kompetenzen	Die Studierenden erklären und verwenden Theorie und Funktionsweisen von numerischen Verfahren der Nichtglatten Optimierung (vertieft). Die Studierenden stellen Probleme der nichtglatten Optimierung auf, untersuchen sie mathematisch und entwickeln numerische Lösungsmethoden, welche sie schließlich anwenden. Diese Fähigkeiten sind in naturwissenschaftlichen, medizinischen, wirtschaftswissenschaftlichen und technischen Anwendungen von Bedeutung.
7	Voraussetzungen für die Teilnahme	Beherrschung grundlegender Theorie und Methodiken der Nichtlinearen Optimierung aus den Bachelor-Studiengängen Mathematik, Technomathematik, Wirtschaftsmathematik (z.B. Abschluss des Moduls "Nichtlineare Optimierung") oder Abschluss des Master-Moduls "Optimierung in normierten Räumen".
8	Einpassung in Studienverlaufsplan	keine Einpassung in Studienverlaufsplan hinterlegt!
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192
10	Studien- und Prüfungsleistungen	mündlich Dauer der mündlichen Prüfung: 20 Min.
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	Unregelmäßig
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 75 h Eigenstudium: 225 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	W. Alt: Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004

J.P. Hiriart-Urruty, C. Lemarechal: Fundamentals of Convex Analysis, Springer, 2001
M.M. Mäkelä, P. Neittaanmäki: Nonsmooth Optimization – Analysis and Algorithms with Application to Optimal Control, World Scientific, 1992

1	Modulbezeichnung 65133	Mathematische Grundlagen zu Künstliche Intelligenz, Neuronale Netze und Data Analytics I Mathematical foundations of artificial intelligence, neural networks and data analytics	5 ECTS
2	Lehrveranstaltungen	Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!	
3	Lehrende	Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!	

4	Modulverantwortliche/r	Dr. Hans Georg Zimmermann	
5	Inhalt	Künstliche-Intelligenz Forschung ist der Versuch, menschenähnliche Denkprozesse auf Maschinen zu übertragen. Das betrifft insbesondere Wahrnehmung (nicht nur Sensordaten, sondern auch Bild- und Audio-daten), Modellierung (Untersuchung von Zusammenhängen in Beobachtungen) und Aktionsplanung (für optimale Aktionsplanung ist ein Modell zur Beurteilung vorgeschlagener Aktionen essenziell). Die Mathematik der Neuronalen Netze wurde von Anfang an als adäquate Lösungsmethode gesehen es dauerte aber ein halbes Jahrhundert, bis diese Mathematik und die Computer Hardware soweit entwickelt waren, dass die Vision tatsächlich bearbeitet werden kann. Im Wintersemester zeigen wir, in welchem Sinne Feedforward Neuronale Netze universelle Approximatoren für komplexe (d.h. nichtlineare und hochdimensionale) Systeme sind. Es wird dargestellt, dass sich das Lernen nicht auf die klassische Sichtweise einer nichtlinearen Regression beschränken lässt. Das liegt auch, aber nicht nur an den Weiterführungen zum Thema Deep-Learning. Wir werden auf die Unterschiede zwischen Regression und Klassifikation eingehen. Weiterführende Kapitel beschäftigen sich mit Unüberwachtem Lernen, Bilderkennung, Neuro-Fuzzy und komplexwertigen Systemen. In der Vorlesung wird auch darauf eingegangen, dass unsere Humane Intelligenz noch andere Qualitäten hat wir sollten Künstliche- und Humane-Intelligenz nicht als Verdrängungswettbewerb sehen, sondern nach einer optimalen Ergänzung suchen.	
6	Lernziele und Kompetenzen	Die Studierenden erkennen selbständig Aufgabenstellungen, in denen Neuronale Netze eine hilfreiche Lösungsmethode sind sind in der Lage, die richtigen Netzstrukturen für echte Anwendungsprobleme zu konstruieren.	
7	Voraussetzungen für die Teilnahme	mathematische Grundlagen aus dem Bachelor-Studium	
8	Einpassung in Studienverlaufsplan	Semester: 1	
9	Verwendbarkeit des Moduls	Mathematische Wahlpflichtmodule Master of Science Wirtschaftsmathematik 20192 Studienrichtung Optimierung und Prozessmanagement Master of Science Wirtschaftsmathematik 20192	

10	Studien- und Prüfungsleistungen	mündlich (15 Minuten)
11	Berechnung der Modulnote	mündlich (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h Eigenstudium: 120 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch oder Englisch Englisch
16	Literaturhinweise	