Master seminar
Material and Topology
optimization

M. Stingl, L. Pflug, F. Wein



Organizational issues (time line)

* Introduction to topics: first week of semester
* Selection of topic via Stud-On
* Presentations of topics: January and February 2025

* Between: 14/10/2024 and 20/12/2024 at least one meeting with
the supervisors!

* ... of course, more meetings can be scheduled on demand



Deliveries

* Handout
* ~10 pages of Latex
* First draft two weeks before presentation
* Final version provided for the other the day before the presentation latest

* Presentation
* ~60 minutes including discussion
* Use latex or powerpoint for slides
* Can be extended by white-/blackboard presentations



Master‘s thesis

* |[n summer semester

* potentially possible

* not necessarily but possibly based on seminar topics

* supervised by various members of our group depending on topic



Topics

* 10 topics will be briefly presented
* Typically a mix of theory and practice (programming involved!)
* Most of them extend contents of ISMO lecture

* Suggestion of “own“ topic still possible
- requires accurate literature specification by students



Topics overview

Optimization solvers for MO/TO problems

1) The method of moving asymptotes (MMA): sequential
programming, separability, Lagrange duality, implementation

2) MMA: convergence analysis
[MMA1, MMA2, MMA3]

Regularization of MO/TO problems

3) The density filter approach (idea, analysis, implementation in
OCM or MMA method)

[REG1]



Topics overview

Material optimization extensions

4) Optimization with anisotropic materials: theory (existence,
convergence), numerical realization

5) Material design: the homogenization method and inverse
homogenization

6) The two-scale optimization approach for stiffness and buckling
averse structures
[ANISO, HOM1,HOM2,BUCK]

MO with advanced state problems

7) MO in presence of cracks by Peridynamics model
[PERI1,PERI2]



Topics overview

Diverse

8)

9)

10)

The feature mapping approach for TO/MQO (concept and
numerical realization, extensions)
[FM1,FM2]

Porous materials: modelling of saturation through Young-

Laplace-Algorithm and a PDE-based approach
[YL1]

Optimal on-ramp control for equilibrium measurements in
analytical ultracentrifugation

[UC]



The Method of Moving Asymptotes

mathematical motivation for separable model

> f(x) = X i) — miny 3 fi(x)) = X miny fi(x;)

» solve n univariate problems (fully equivalent!)

White board illustration ...
e. g. compliance: J(D) = u(D) ' K(D)u(D)

=Y u(D)"B;' D;Biu(D)
i

\ /

non-separability solely through state ...



The Method of Moving Asymptotes

e Svanberg (87, ’95), Fleury ('86, ‘89, '94), to name only the pioneers ...

* separable Ansatz (here simplified and for ‘lower asymptotes” only):

o~ =c+ Tl

= Li —)
e C,p;(~ f!(t),i—th partial derivative ) chosen to match first order correctness

e [; (asymptote) computed based on heuristics (e. g. Svanbverg, Zillober, ...), 2nd
order information (e. g. Duysinx, ...), ...



MMA (topic 1: separable models and duality)

distinguish box constraints and general inequality constraints;
switch back to MO notation ...

simplest approach: Lagrange function

use dual method based on Lagrange dualization

assume separability, i. e. use separable?and g; and form
separable Lagrangian L for those; then:

now dualize (switch min and max):

evaluation of d(.1) as before (exploiting separability!)

min fle), st gilp) =<0, [=1,2,...,.H
pelpriIm (o) 9i(p) J g

Lp.A) = () + D Aig(p)

min f(p), s.t. 9(p) < 0, == min max L(p, 1) (+
pE[;_)!ﬂm () g(p) < Op, p€[£!1]m {Qon); (0, 1) (%)

) &< max min L |
( ) IIZOng pE[F_),1]m (p )

-

-~

:=d(1) (dual function)



The Method of Moving Asymptotes

TOPIC 1 [MMA1, MMAZ2] :

- Separable approximation

- MMA approximation

- Dual algorithm

- Implementation and demonstration

TOPIC 2[MMA2, MMA3] :

- Outer algorithm (sequential separable approximation)
- Globalization

- Convergence Theory



Filter regularization (instead of Lipschitz-constraints)

> define neighborhood of element Q;; let w; be mid point of Q;
NF =] | lwi - wjll < R]

Wi .. roomies
7

» sensitivity filtering (. . . heuristic!): use
CD 2ijeN dioj g 3pj

= di = max{R — [|x; — xil|, 0}
dpi 2jen; g (9= Ml

instead of 0®/dp; = p,o‘;’_1 u' Kju in OC scheme ...
ZJEM djpj

> mathematically more rigorous: density filtering p; = >
=N

Ch=lien e o0l



Filter regularization

TOPIC 3 [REG1]:

- Explanation of Filter concept
- Existence theory

- Discretization

- Implementation
(e.g. via integration into OCM method, cf. Exercise 3 in ISMO)
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Simultaneous topology and Material Optimization

Questions: where to use material

Y

Example: material with microstructure;

... and if material is used, which one?

here: rank2-laminate
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Simultaneous topology and Material Optimization

TOPIC 4 [ANISO] :

- TO/MO model

- Extension of existence & convergence theory
- Numerical approximation (rather standard!)
- Material parametrizations

Could be split into two 2 topics (theory, practice, ...)



Inverse homogenization

How to define material with desired properties via ist microstructure?

Homogenization procedure for periodic materials

Eii1 Eie2 V2FE1119
E = E2292  V2FE2212

sym. 2F1919

(: I )

Numerical computation: solve state problem (elasticity) with periodic
b.c. and specific right hand sides ...

g= (2 e=0.1 c—0



Inverse homogenization

Negative Poission‘s ratio material

min v (CH (p)) s. t.
peR"h

np

> 1S9 lpr =¥

r=1

0<£ et i o =1 ihp

E"(C"(p)) = Eiow,
g c (-0 i1 ns,

lor — ps\< ch, re{l,...,ny}, s € N(r).

Computed by homogenization




Inverse homogenization

TOPIC 5 [HOM1, HOM2] :

- Asymptotic homogenization (formal derivation of cell problem ...)
- The material design problem
- Existence, convergence ...

- Numerical realization and examples

Could be split into two 2 topics (theory, practice, ...)



Two-scale optimization and buckling
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* Use parametrized microstructure (1 variable controls

thickness of structure)

* Use homogenization approach to predict elastic properties

and local buckling behaviour

* Integrate into macroscopic model



Two-scale optimization and buckling

TOPIC 6 [BUCK] :
- modelling of global buckling through eigenvalue problem

- Prediction of local properties (including local buckling) through
homogenization approach

- Optional: own numerical realization (FE analysis for buckling non-
trivial ...)

- examples

Could be splitinto two 2 topics (modelling, implementation, ...)



MO in presence of cracks by Peridynamics model

(c) PD 100%50

Coontinuum model replaced by peridynamics model:

material properties computed from potentials
along connections through bonds in finite horizon

(d) FEM 100x50



MO in presence of cracks by Peridynamics model

|

0

crack
45°

crack
45°

<

o

(Pre-)crack modelling through “missing bonds*

y's

(a)

(b)

Topology with and w/o crack ...



MO in presence of cracks by Peridynamics model

TOPIC 7 [PERI1,PERIZ2] :
- Derivation of PD model for elasticity

- Implementation of PD model
- Experiments

In addition, theory topics could be identified ...



The feature-mapping approach for TO/MO

Mapping of high order geometries (circles, bars, ...) to element wise
pseudo density field: object = signed distance - boundary
function = integration of pseudo density > FEM

* math. programming for arbitrary functions/ geometries/ physics
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The feature-mapping approach for TO/MO

Possible Master‘s thesis: Modeling multi-layer continuous carbon
fiber-reinforced printing in a feature-mapping material model.

'l

feature-

LFP optimization numerical
validation

* layered fiber pattern optimization finds manufacturable realization
for 3D printing of continuous carbon fiber-reinforced filament

* large discrepance modelvs. realization

* model ,realization* within structural optimization, e.g. junction

requirements mapp!ng
-load 1, ..., n A
-stress

-displacement




Porous materials: modelling of saturation through
Young-Laplace-Algorithm and a PDE-based approach
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Porous materials: modelling of saturation through Young-
Laplace-Algorithm and a PDE-based approach

TOPIC 9[YL]:
- Modelling of staturation in porous medium via YL-equation
- Implementation of stabdard algorithm

- Implementation of PDE based approach (e.g. through static heat
equation with high contrast materials)

- Experiments, Comparisons



Optimal on-ramp control for equilibrium
measurements in analytical ultracentrifugation

SIS

V9,

(e {/ I‘
0.
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Q;O’Q
* nY N

e.g. 30.000 rpm



Optimal on-ramp control for equilibrium
measurements in analytical ultracentrifugation

0.c(r,t) +w(t)?sr~1a, (c(r,t)r?) = Dr~10,.(0,.c(r, t)r)
c(r,0) = c,

on [ry, 7] X [0, T]
FInd T > 0 minimaland w € Q s.t.

c(r,T) = ceq(r) Vr



Optimal on-ramp control for eq. meas. in AUC
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Potential topics for master‘s thesis

- Follow up of MMA topics
- sequential separable programming using sparse grids
- almost exact separable models through topological derivatives

- Two-scale optimization: continuation of buckling topic (exact
treatment of local buckling)

- Inverse homogenization: nonlinear homogenization and
orogressive materials

- Porous materials: optimal design of porous materials with desired
nermeabiliy and saturation curves




Potential topics for master‘s thesis (ll)

- Peridynamics
- Crack propagation ...
- Shape mappings

- Fiber interpretation approach

- Optimal on-ramp control for equilibrium measurements in analytical
ultracentrifugation (direct continuation of seminar topic)

- Your own suggestions ...
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